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Abstract We consider proper colorings of planar graphs embedded in the annulus, such that
vertices on one rim can take Qs colors, while all remaining vertices can take Q colors. The
corresponding chromatic polynomial is related to the partition function of a boundary loop
model. Using results for the latter, the phase diagram of the coloring problem (with real
Q and Qs) is inferred, in the limits of two-dimensional or quasi one-dimensional infinite
graphs. We find in particular that the special role played by Beraha numbers Q = 4 cos2 π

n

for the usual chromatic polynomial does not extend to the case Q �= Qs. The agreement with
(scarce) existing numerical results is perfect; further numerical checks are presented here.

Keywords Chromatic polynomial · Boundary loop model · Temperley-Lieb algebra ·
Graph colorings

1 Introduction

Let G = (V ,E) be a planar graph embedded in the annulus. Let Vs ⊆ V be the subset of
vertices surrounding the face that contains the point at infinity. In other words, Vs are the
vertices on the outer rim of the annulus. Place a spin variable σi = 1,2, . . . ,Q on each bulk
vertex (i ∈ V \Vs) and a boundary spin σj = 1,2, . . . ,Qs on each boundary vertex (j ∈ Vs).
We suppose initially that Qs ≤ Q, so that Q − Qs of the colors allowed for the bulk spins
are forbidden for the boundary spins.

J.L. Jacobsen (�)
Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond,
75231 Paris Cedex 05, France
e-mail: jesper.jacobsen@ens.fr

J.L. Jacobsen · H. Saleur
Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette, France

H. Saleur
Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089,
USA

mailto:jesper.jacobsen@ens.fr


708 J.L. Jacobsen, H. Saleur

The Potts model [1] partition function ZG(Q,Qs;v)—also known to graph theorists as
the multivariate Tutte polynomial [2]—can be defined through a slight generalization of the
usual Fortuin-Kasteleyn expansion [3, 4]

ZG(Q,Qs;v) =
∑

A⊆E

Qk(A)

(
Qs

Q

)ks(A) ∏

e∈A

ve (1)

where k(A) is the number of all connected components (clusters) in the graph induced by
the edge subset A, and ks(A) is the number of connected components that contain at least
one vertex from Vs. In other words, Qs (resp. Q) is the weight of a cluster that contains at
least one (resp. does not contain any) vertex in Vs. The edge variables v = {ve}e∈E are related
to the usual spin-spin couplings Ke through the relation ve = exp(Ke) − 1.

Note that in (1) there is no need for Q and Qs to be integers, nor do we have to impose
the constraint Qs ≤ Q. We shall henceforth promote (1) to the definition of the (boundary)
Potts model [5].

In this paper we wish to study the problem of proper colorings of G, such that bulk
vertices can have Q different colors, whereas boundary vertices can have only a subset of
Qs colors. Adjacent vertices (of whatever type) are constrained to have different colors. The
partition function ZG(Q,Qs;−1), i.e. with all ve = −1, counting the number of such proper
colorings is referred to as the boundary chromatic polynomial and denoted PG(Q,Qs). Note
that PG(Q,Q) is nothing else than the usual chromatic polynomial, which has been studied
extensively in the literature [6].

We address in particular the issue of the phase diagram of PG(Q,Qs) for “large
graphs”—what is meant precisely by this will be discussed below. The main result is the
location and nature of a series of phase transition (with corresponding behaviors of zeroes
of PG) occurring when one varies one or both of the parameters Q and Qs. We emphasize
that most of our results are quite general, and do not depend on the detailed structure of the
underlying graph G.

In the usual case Q = Qs, one of the striking features of the chromatic polynomial is that
for “large graphs” its real zeroes possess accumulation points which belong to the magic set
of Beraha numbers:1

Bt = 4 cos2
(π

t

)
for t = 2,3, . . . . (2)

Note that the first two such numbers are Q = 0 and Q = 1, which are usually exact zeroes
for finite graphs as well. One of the striking conclusions of our study is that the special role
played by Beraha numbers is not very resistant to changing Qs. Depending on the problem
one choses, there can indeed be accumulating zeroes at other special points of the real axis.

It is important to realize that the definition of PG(Q,Qs), albeit very natural, can lead
to counterintuitive features in particular when interpreted outside the initial domain of def-
inition Qs ≤ Q. For instance it turns out that for most graphs, PG(Q,Qs) does not vanish
when Q = 0 or Q = 1, even though in that case there is no way—forgetting the bound-
ary contribution—to color the bulk vertices with Q colors. The point is that in the original
definition (1), spins belonging to clusters that touch the boundary receive a fugacity Qs,

1When Q = Qs, and for certain particular (non annular) choices of boundary conditions (see Sect. 7.2 of
[7]), one also finds isolated real accumulation points which are not Beraha numbers. The existence of such
points may presumably be traced back to accidental (non generic) degeneracies of eigenvalues in the transfer
matrix spectra.
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Fig. 1 For this graph (with the shaded vertices on the boundary) the chromatic polynomial continued from
the region Q ≥ Qs is PG = (Q2 − 3Q + 3)Qs(Qs − 1). It does not vanish for Q = 0 nor Q = 1. Mean-
while the chromatic polynomial continued from the region Q ≤ Qs is obtained—in this simple example—by
exchanging Q and Qs in the above expression, and does vanish for Q = 0 and Q = 1

which initially is assumed smaller or equal to Q, but which, after continuation, can in fact
be greater, hence “pumping” the number of colors in the bulk. Figure 1 provides a simple
example of this subtlety.2

One could define another chromatic polynomial starting from the situation where
Q ≤ Qs. In terms of the subsequent cluster and loop model expansions, it would however
be much less interesting. Indeed, in such a model, only clusters not containing any of the
bulk spins would get the fugacity Qs, and thus only loops “glued to the boundary” would
get a fugacity different from the bulk ones. This presumably would not affect the patterns of
zeroes.

The layout of the paper is as follows. In Sect. 2 we relate the boundary chromatic poly-
nomial to a loop model which was previously introduced in [5] and further studied in [8]. In
Sect. 3 the issue of the phase diagram is transposed into the setting of the Beraha-Kahane
Weiss theorem [10] which we review. The necessary input for applying that theorem is sup-
plied by an analytic continuation of the field theoretic results of [5], as explained in Sect. 4.
Here we also arrive at the main results of the paper, which are the phase transition loci
(15)–(16). All of this applies to the two-dimensional thermodynamic limit. However, the
main results remain valid for quasi one-dimensional graphs, and we provide the necessary
arguments in Sect. 5. A few numerical validations of our results are given in Sect. 6 after
which we present our conclusions.

2 Boundary Loop Model

The cluster model (1) can obviously be defined for any graph G. However, when G is planar,
the cluster model can be turned into a loop model on the medial graph M.

We recall that the medial (or surrounding) graph has a vertex standing on each edge
e ∈ E, and an edge between vertices standing on edges e1, e2, whenever e1, e2 are incident
to a common vertex in V and surround a common face in G.

A non-intersecting transition system on M is defined locally as in Fig. 2. Globally, this
transition system is a set of loops—or cycles in the standard graph theoretical terminology—
which separate clusters in G from their duals. By the existence of a point at infinity, the

2To keep this example as elementary as possible, we deviate slightly from the above definition of Vs. In
particular, Fig. 1 is not considered to be embedded in the annulus, nor does Vs consist of all the vertices
surrounding the outer face. Clearly, the expansion (1)—and the discussion of the subtleties brought about by
the initial Qs ≤ Q constraint—apply to any graph G (planar or not), and for Vs any subset of V . However,
the role of the Beraha numbers and the transformation to a (boundary) loop model are very particular to the
planar case.
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Fig. 2 The transition system (shown as dashed lines) depends on whether a given edge e (show as a solid
line) is present in (left panel) or absent from (right panel) the edge subset A ⊆ E in (3)

inside and outside of a loop are well defined. A loop that contains at least one vertex of Vs

on its inside is called a boundary loop. A loop that is not a boundary loop is called a bulk
loop.

Let now �(A) be the total number of loops, and �s(A) the number of boundary loops. By
the Euler relation, one has k(A) = 1

2 (�(A) + |V | − |A|), so that

ZG(Q,Qs;v) = Q|V |/2
∑

A⊆E

Q�(A)/2

(
Qs

Q

)�s(A) ∏

e∈A

xe (3)

where we have introduced xe = Q−1/2ve . In other words, the weight of a bulk loop (resp. a
boundary loop) is n (resp. ns), subject to the relations

Q = n2, Qs = nns. (4)

The boundary loop model (3) was introduced in [5], and further studied in a more general
setting in [8]. The emphasis in [5, 8] was on the ferromagnetic case where all xe = 1. We
shall see now that the generalization of these results to the antiferromagnetic region (with
xe < 0) allows to infer the phase diagram of the boundary chromatic polynomial.

3 Beraha-Kahane-Weiss Theorem

We wish to study the boundary chromatic polynomial in the thermodynamic limit where G

becomes large (|V | → ∞). In general, one may take the limit |V | → ∞ through a recursive
family of graphs GN embedded in the annulus, of width W and circumference N , such that
|V | ∼ NW and |Vs| ∼ N . In particular one may think of strips of regular lattices (square,
triangular, . . .), but we emphasize that most of our results do not depend on the detailed
structure of the graph, nor do they require that it be regular.

In Sect. 4 we take the width W ∝ N , so that the limiting graph G∞ is two-dimensional,
and the results [5] of conformal field theory (CFT) apply. In Sect. 5, we consider instead W

finite, so that G∞ is quasi one-dimensional, and we shall see that the main results hold true
in that case as well.

In both cases one may think of the partition function PG(Q,Qs) as being built up by a
transfer matrix, with time slices containing W spins. The structure of the transfer matrix has
been discussed in details in [5], and in particular it was shown that each of its eigenvalues
λi contributes to the partition function with a non-trivial multiplicity Di that we shall refer
to as an eigenvalue amplitude. Hence,

PG(Q,Qs) =
∑

i

Di(λi)
N . (5)
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The fact that Di �= 1 in general can be traced back to the non-local nature of the loops
defining (3), and to the periodic boundary conditions in the time direction.

We wish to study the phase diagram of the boundary chromatic polynomial by locat-
ing the accumulation points A of the partition function zeroes PG(Q,Qs) = 0 in the limit
N → ∞. Following Lee and Yang [9], this can be done by fixing one of the variables Q or
Qs (or by imposing a fixed relation among Q and Qs), and letting the remaining variable
(henceforth denoted z) take complex values.

Due to the form (5) the Beraha-Kahane-Weiss (BKW) theorem [10] applies. Let us call
an eigenvalue λi dominant at z if |λi(z)| ≥ |λk(z)| for all k. The BKW theorem then states
that (under very mild assumptions)

• z ∈ A is an isolated accumulation point iff there is a unique dominant eigenvalue λi at z

and the corresponding amplitude vanishes, αi(z) = 0.
• z ∈ A forms part of a continuous curve of accumulation points iff there are at least two

dominant eigenvalues at z. (In other words, z is the locus of a level crossing involving a
dominant eigenvalue.)

It is not in general clear to what extent CFT predictions apply to complex values of
the parameters Q and Qs. But at least we can infer important information about the phase
diagram by combining the BKW theorem [10] with the CFT results [5] for the special case
of real parameter values.

4 Phase Diagram in the Thermodynamic Limit

It is useful to parametrize the bulk and boundary loop weights as follows

n = 2 cos(πe0), ns = sin((r + 1)πe0)

sin(rπe0)
(6)

defining the parameters e0 and r ∈ (0, 1
e0

). The continuum theory then has central charge

c = 1 − 6e2
0

1 − e0
. (7)

The range e0 ∈ [0, 1
2 ) describes the usual ferromagnetic-paramagnetic transition, corre-

sponding to positive values of n and ns.
We here need the analytic continuation into the range e0 ∈ ( 1

2 ,1), where n and ns be-
come negative. This range was referred to as the Berker-Kadanoff (BK) phase in [11, 12].
Inspecting Fig. 2 it is easy to see that (3) is invariant under a simultaneous sign change of
n, ns, and xe . The BK phase therefore corresponds to negative values of xe , i.e., it describes
a part of the antiferromagnetic region of the Potts model. Its relevance to the chromatic line
ve = −1 is due to the fact that the temperature variable ve is an irrelevant perturbation in the
BK phase, in the sense of the renormalization group. The BK phase therefore controls, for
any fixed Q ∈ (0,4), a finite range of values ve . One may therefore expect that at least for
Q < Qc, where Qc ≤ 4 is some lattice-dependent constant, the BK phase will control the
chromatic line ve = −1.

To give a little more substance to this general discussion, it is worthwhile to recall some
exact information about the special cases of the square and triangular lattices. The standard
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Potts model (Qs = Q and ve = v) is then exactly solvable on the curves [13, 14]

v2 = Q (square lattice),

v3 + 3v2 = Q (triangular lattice).
(8)

In view of the parametrization (6) it is more convenient to rewrite this as

v = 2 cos(πe0) (square lattice),

v = −1 + 2 cos

(
2πe0

3

)
(triangular lattice)

(9)

where e0 ∈ [0,1] for the square lattice and e0 ∈ [0, 3
2 ] for the triangular lattice.

Both analytical and numerical studies of the Potts model with Qs = Q and either free
or periodic transverse boundary conditions conclude that the critical exponents along the
curves (8) for e0 ∈ [0,1) are those predicted by the CFT. In particular, the central charge
is (7) as claimed. Moreover, the exponents for e0 ∈ ( 1

2 ,1) are just the analytic continua-
tions of those valid for the usual ferromagnetic regime e0 ∈ (0, 1

2 ). This already strongly
suggests that the critical properties for e0 ∈ [0,1) are lattice-independent (universal).3 This
conclusion is further corroborated by the so-called Coulomb gas approach [15] to CFT.

Further studies have established that for each Q ∈ (0,Qc) the chromatic polynomial
indeed renormalizes to the BK phase, with the following values of Qc for the square [17]
and triangular [18–20] lattices

Qc = 3 (square lattice),

Qc = 3.8196717312 . . . (triangular lattice).
(10)

We now return to the main objective of this section, which is to establish the critical
behavior of the boundary chromatic polynomial. On general grounds, boundary conditions
should not modify bulk RG flows.4 Therefore, we expect the analytic continuation of the
CFT results [5] to the range e0 ∈ ( 1

2 ,1) to describe the critical behavior of the boundary
chromatic polynomial for Q ∈ (0,Qc).

It is convenient to set e0 = 1 − 1
t
, so that the BK phase corresponds to t > 2. The para-

meter r appearing in (6) is then constrained to r ∈ (0, t
t−1 ). We have

n = −2 cos

(
π

t

)
,

ns = − sin( (r(t−1)−1)π

t
)

sin( r(t−1)π

t
)

.

(11)

3In the case of the triangular lattice, the range e0 ∈ (1, 3
2 ] describes a very different CFT [16] which we shall

not need further in the present work.
4This is of course a subtle issue in cases such as this one, where the statistical models are not very physical. In
fact, there are some boundary terms that can profoundly affect the behavior of flows in the Berker-Kadanoff
phase—for instance those breaking the quantum group symmetry in the XXZ chain version of the models. For
the boundary terms we are considering however—which can be described through the boundary Temperley
Lieb algebra—no such “rogue” behavior seems to occur.
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In this parametrization, Q = n2 (see (4)) is nothing else than the t th Beraha number Bt

defined in (2). Real chromatic zeroes have long been known [6] to accumulate around Bt for
integer values of t ≥ 2. One major motivation of this work is to show that the special role
played by the Beraha numbers is destroyed by choosing Qs �= Q.

As explained in [5] the detailed transfer matrix structure implies that each eigenvalue ap-
pearing in (5) is in fact an eigenvalue of a modified transfer matrix in which the number of
loops winding around the periodic direction of the annulus (i.e., which are non-homotopic
to a point) is fixed. Each eigenvalue can thus be labelled by the corresponding number of
winding loops L = 0,2,4, . . . , as λ

(L)
i . By the definition of the Potts model and the me-

dial graph M, the corresponding number of winding clusters is L/2. In each sector with
L > 0, the dominant eigenvalue corresponds to the outermost of the winding loops being
constrained to be a boundary loop (i.e., we can restrict to what was called the “blobbed
sector” in [5, 8]).

The existence of L winding loops corresponds in CFT to the insertion of a pair of so-
called L-leg operators OL at the extremities of the strip; the extremities are subsequently
glued together to form the annulus with periodic boundary conditions in the time direction.
The asymptotic scaling for W � 1 of the dominant eigenvalue λ

(L)

0 in each sector L is then
fixed by CFT as [21]

λ
(L)

0

λ
(0)

0

= exp

(
−πhL

W

)
+ · · · (12)

where the dots on the right-hand side represent terms that decay faster than exp(−const/W).
The constant hL appearing in (12) is the so-called conformal weight of the L-leg operator

(in the “blobbed sector”) whose value has been established in [5, 22]. After the analytic
continuation implied by the parametrization (11), this reads

hL = 1

4t

(
L2 − 2rL(t − 1) + (r2 − 1)(t − 1)2

)
. (13)

The corresponding eigenvalue amplitude has been derived rigorously in [5]:

DL =
{

1 for L = 0,

nsUL−1(n/2) − UL−2(n/2) for L > 0
(14)

where Uj(x) is the j th order Chebyshev polynomial of the second kind.
Note that in the probabilistic regime (e0 ∈ [0, 1

2 ]) the continuum limit is dominated by
L = 0. This is no longer true in the BK phase, where for any t there is at least one of
the exponents hL taking negative values. The most negative exponent determines the most
“probable” number of winding loops. This situation is clearly counter-intuitive from a prob-
abilistic point of view, but it is made possible by the appearance of negative Boltzmann
weights. Note also that the invariance of (3) under a simultaneous sign change of n, ns, and
xe is not sufficient to make all weights positive.

Using (12), dominant level crossings of transfer matrix eigenvalues correspond asymp-
totically (for W � 1) to level crossings of the conformal weights hL. We can thus read
directly from (13) the necessary and sufficient criterion for the second part of the BKW
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Fig. 3 Conformal weights hL as
functions of the parameter r for
the case t = 6. Dominant level
crossings and vanishing
dominant amplitudes are shown
respectively as solid circles and
crosses

theorem. Indeed, level crossings involving the dominant L-leg sector occur when

hL = hL+2 ⇐⇒ r = L + 1

t − 1
(15)

with L ≤ t − 1. In particular, hL is the most negative exponent for r ∈ (L−1
t−1 , L+1

t−1 ).
Similarly, the necessary and sufficient criterion for the first part of the BKW theorem is

read off from (14). Indeed, the amplitude of the dominant L-leg sector vanishes when

DL = 0 ⇐⇒ r = L

t − 1
(16)

with L = 2,4,6, . . . .
These phenomena are illustrated in Fig. 3 for the case t = 6 (the Q = 3 state Potts model).
For any fixed n, phase transitions will therefore take place for r = s/(t − 1) and integer

s ∈ (0, t]. The corresponding value of the boundary parameter is

ns = − sin( (s−1)π

t
)

sin( sπ
t
)

. (17)

For even s this corresponds to a vanishing dominant amplitude, and for odd s to a dominant

level crossing. The corresponding value of the dominant exponent (13) is hL = − (t−1)2

4t
for

any even s, and hL = 2−t
4 for any odd s.

The N → ∞ limiting curve of accumulation points of partition function zeroes in the
complex Qs plane (in the vicinity of the real Qs axis) can now be inferred from the BKW
theorem: For even s one has an isolated real accumulation point, and for odd s a continuous
curve of accumulation points intersects the real axis.

In the example t = 6 of Fig. 3, the transitions at r = 1
5 , 2

5 , 3
5 , 4

5 ,1, 6
5 correspond to the

following numbers of boundary colors: Qs = 0,1, 3
2 ,2,3,∞.

The discussion following (16) has subsumed that we are interested in the phase diagram
for fixed Q and varying Qs. But of course the criteria (15)–(16) for phase transitions hold
true for other situations as well. In particular, the following few useful cases correspond to
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simple relations between r and t :

Qs = Q : r = 1,

Qs = Q − 1 : r = (t − 2)/(t − 1),

Qs = Q − 2 : r = (t − 2)/(2t − 2),

Qs = Q − √
Q : r = 1/2,

Qs = 0 : r = 1/(t − 1),

Qs = 1 : r = 2/(t − 1),

Qs = 2 : r = (t + 2)/(2t − 2),

Qs = 1
2Q : r = t/(2t − 2).

(18)

For all of these, (15)–(16) yield phase transitions located at integer values of t (i.e., at the
Beraha numbers Bt ), but this needs of course not be the case for more general choices of Qs.

5 Quasi One-Dimensional Case

We now turn to the quasi one-dimensional geometry where the circumference of the annulus
N → ∞, while is width W is kept fixed and finite. In that case, the possible number of
winding loops is constrained by L ≤ 2W .

Equation (14) for the eigenvalue amplitudes was in fact derived combinatorially for fi-
nite W , and so remains valid in this case. On the other hand, (13) must be discarded, since
its derivation supposed the validity of conformal field theory. However, the pleasant surprise
is that even for finite W the dominant eigenvalues in the L and (L + 2) leg sectors cross
exactly for the values of r and t given by (15).

This coincidence follows from representation theory of the underlying boundary
Temperley-Lieb algebra. While this algebra is semi-simple for generic values of the parame-
ters, it admits families of degeneracy points where generically irreducible representations
merge into larger indecomposable representations. Results in [23] guarantee that this occurs
for finite values of W exactly at the same values that lead to the coincidences (15) of the
conformal weights in the continuum limit. To be a little more explicit, let us use again the
parametrization (6) so that the γ in [23] is πe0. Then when r = L+1

t−1 as in (15) we can

rewrite ns = sinLγ

sin(L+1)γ
so we are in a degenerate case (19) of [23] with η = (L + 1)γ there.

The embedding (16) of [23] with nc = L + 1 and l = 1 guarantees the coincidence (15).
When r = 1—in the original parametrization (6)—this can be understood somewhat

more easily by using quantum group representation theory [24], as the generic Uq(sl(2))

representations for sectors L and L+2, of spin j = L/2 and j = L/2+1, merge into larger
indecomposable representations. When r is integer larger than one, this can be explained
similarly by the construction of Sect. 5 in [5]. Indeed, there the effect of the boundary
weight ns was obtained algebraically by adding r extra strands on the outside of the an-
nulus, subject to the action of a certain symmetrizer. Thus, the boundary loop model (3)
with r integer is a special case of the standard loop model in which only the weight n ap-
pears. The latter is known to have an Uq(sl(2)) quantum group symmetry [24], and this in
fact implies that (15) still holds true. The presence of exact coincidences at arbitrary r can
maybe be interpreted in terms of some quantum group—the commutant of the boundary
Temperley-Lieb algebra—but we will not discuss this here.

The key results of Sect. 4 therefore remain valid, up to two subtle effects to be discussed
below.
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Fig. 4 Leading free energies fL

in the sectors L = 0,2,4,6 as
functions of r ∈ (0, 6

5 ). The
boundary loop model is here
defined on the square lattice,
along the BK critical curve, and
the parameter t = 6. Four
different system sizes
(W = 8,10,12,14) are shown,
the largest size corresponding to
the lowermost curves. The
vertical lines are guides to the
eye

To make this conclusion more accessible to readers unacquainted with quantum groups
we turn to a numerical verification. Figure 4 shows the leading free energies fL =
− 1

W
logλ

(L)

0 in the L-leg sector, as functions of r in the parametrization (11), for four differ-
ent values of W . The results were obtained for the square lattice in the diagonal geometry
defined in [5], along the curve (9) with e0 ∈ ( 1

2 ,1), i.e., within the BK phase. Results for
other lattices would be similar, provided that one remains inside the domain of attraction of
the BK phase.

For each W , the dominant level crossings are seen to occur exactly as predicted by (15).
More generally, the r values singled out by (15)–(16) are seen to be the loci of subdominant
level crossings as well, as would be expected from an underlying quantum group symmetry.

Figure 4 was made for the choice t = 6 (the Q = 3 state Potts model), so that it is the
precise finite-size analogue of Fig. 3. Other, non-integer choices of t were found to lead to
the same conclusions.

We still need to discuss the two subtle effects referred to above. The first one is that if the
annulus is too narrow (2W < �t�) to accomodate the number of legs required by dominant
sector with the largest L predicted by (15), the corresponding level crossings will simply
be absent, and the 2W -leg sector will remain dominant for the corresponding values of the
parameter r .

The second effect is that Fig. 4 gives clear evidence that when r becomes too large, there
is an internal level crossing in each L-leg sector, visible as a cusp in the curves. To the right
of these cusps the pattern of dominance may change. A detailed analysis of the loci of the
cusps reveals that their position tends to r = 1 as W → ∞, independently of the value of L.
Moreover, for r ∈ (1, t

t−1 ) it is the L = 0 sector that will be dominant for large enough W .

6 Numerical Verifications

To conclude this paper, we wish to check that the predictions of Sects. 4–5 agree with ex-
isting numerical results on the limiting curves A of chromatic zeroes. The goal of this com-
parison is furthermore to convince the reader that our results are:

1. Lattice independent;
2. Independent of ve , as long as we are in the BK phase;
3. Correct for various choices of Qs.
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Fig. 5 Zeroes in the complex Q

plane of the triangular-lattice
chromatic polynomial on an
W × N annulus for W = 7 and
N = 35, and their accumulation
points as N → ∞. The boundary
parameter Qs = Q. Taken from
Fig. 7 of [25]

Figure 5 shows the accumulation points A for the triangular-lattice chromatic polynomial
on an annulus of width W = 7. Transverse boundary conditions are free, so that Qs = Q.
The agreement with the predictions (15)–(16) for the real accumulation points is perfect.
There is one additional real accumulation point at Qc(W) = 3.4682618071 . . . which is a
finite-size analogue of Qc discussed in Sect. 4. As W → ∞ we expect Qc(W) → Qc given
by (10).

Figure 6 shows the accumulation points A of partition function zeroes for a square-lattice
Potts model along the curve (8). The geometry is that of an annulus of width W = 3 with
free transverse boundary conditions. However, all vertices on the outer rim of the annulus are
connected to an extra exterior vertex. Therefore, the vertices on the outer rim (call them Vs)
support spins which are effectively constrained to take only Qs = Q − 1 different values
(since they must be different from the value of the exterior spin). The partition function
on the graph just described is therefore equal to QZG(Q,Qs = Q − 1;ve = ±√

Q) in our
notation, where now G is just an ordinary annulus of width W , with no extra exterior vertex.

Once again, the agreement with the predictions (15)–(16) for the real accumulation points
is perfect. In particular, it follows easily from the predictions that the loci of isolated real
accumulation points and curves of accumulation points intersecting the real Q-axis are
swapped between Figs. 5 and 6. Along the curve (8) we would expect the BK phase to
terminate only at Qc = 4. Thus, the phase transition corresponding to the largest possible
L-sector becoming dominant is limited by the available width as L ≤ 2W . This is again in
perfect agreement with Fig. 6. Similar agreements are found with the numerical results for
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Fig. 6 Zeroes in the complex Q

plane of a square-lattice Potts
model along the curve (8) on an
W × N annulus for W = 3 and
N = 26, and their accumulation
points as N → ∞. The boundary
parameter Qs = Q − 1. Taken
from Fig. 5 of [26]

Fig. 7 Zeroes in the complex Q

plane of the Qs = Q − 2
boundary chromatic polynomials
on an W × N annulus, with
W = 2 and N = 100, for both the
square and the triangular lattice.
The black vertical lines indicate
the positions of the Beraha
numbers (2)

real accumulation points given in [26] in the case W = 4 (for which the complete limiting
curve A was not computed).

As a final check, we have computed the boundary chromatic polynomials with Qs =
Q − 2 on an W × N annulus for W = 2 and N = 100, for both the square and the triangular
lattice. Their zeroes in the complex Q plane are shown in Fig. 7. The agreement between
(15)–(16) and the real accumulation points for the triangular lattice is striking. Notice in
particular that we predict in general that only Beraha numbers of even order, viz. Bt with
t = 4,6,8,10, . . . , can appear as accumulation points on the real Q axis. For the square
lattice, the branch cutting the real axis at Q = 3 marks the termination of the BK phase, in
agreement with (10); to the right of this branch one does not observe any further structure
as expected.



Boundary Chromatic Polynomial 719

7 Conclusion

To summarize, we have introduced a new graph coloring problem—the boundary chromatic
polynomial—and identified the loci of phase transitions for real values of the parameters Q

and Qs. Our results are lattice independent, and valid not only on the chromatic line but in
the entire Berker-Kadanoff phase.

While we have provided a number of striking numerical tests that validate our analytical
predictions, we believe we have left ample space for further numerical investigations of the
boundary chromatic zeroes for families of graphs embedded in the annulus.

A straightforward extension of the work presented here would be to consider graphs on an
annulus for which bulk spins can take values 1,2, . . . ,Q, whereas spins on the outer (resp.
inner) rim of the annulus are constrained to take values 1,2, . . . ,Qo (resp. 1,2, . . . ,Qi).
Note that in the cluster expansion analogous to (1), the number of spin values accessible to
clusters touching both rims can be taken as a further independent variable Qb, not necessar-
ily equal to min(Qo,Qi).

Recent work on the corresponding two-boundary loop model furnishes the results for
the eigenvalue amplitudes [8] and the critical exponents [27], analogous to (13)–(14) of this
article. The phase diagram for real parameter values Q, Qo, Qi, Qb can therefore be worked
out along the lines presented here.
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